If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(1/3)^3x^2=128x
We move all terms to the left:
(1/3)^3x^2-(128x)=0
Domain of the equation: 3)^3x^2!=0We add all the numbers together, and all the variables
x!=0/1
x!=0
x∈R
(+1/3)^3x^2-128x=0
We add all the numbers together, and all the variables
-128x+(+1/3)^3x^2=0
We multiply all the terms by the denominator
-128x*3)^3x^2+(+1=0
Wy multiply elements
-384x^2+1=0
a = -384; b = 0; c = +1;
Δ = b2-4ac
Δ = 02-4·(-384)·1
Δ = 1536
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1536}=\sqrt{256*6}=\sqrt{256}*\sqrt{6}=16\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{6}}{2*-384}=\frac{0-16\sqrt{6}}{-768} =-\frac{16\sqrt{6}}{-768} =-\frac{\sqrt{6}}{-48} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{6}}{2*-384}=\frac{0+16\sqrt{6}}{-768} =\frac{16\sqrt{6}}{-768} =\frac{\sqrt{6}}{-48} $
| 5x+7=5x−5 | | 5/2=-2x-(2x-4)-1/2 | | 3/4f=21/2 | | 3a+12=a-2 | | 3x+5(x−4)−4=60 | | 5n+6=3n-4 | | -x/2+10=8 | | 14.2=6.34+c | | 12+y=50.73 | | 5x+2=10+6x | | 0.5^x=0.15 | | 8p-9=63 | | -4-4x=x+1 | | 8y+8y=64 | | 2(4-6v)=10v-234 | | 5y+18=8 | | 5x−2(x−2)=−4+5x−2 | | -1-(-x-1/2)=4+1/2(-9x+2) | | 8y+8y=62 | | -9(w+31)=81 | | 22=m/6+4 | | 3.6=9.0r | | H-84x2=5 | | 14+8b=5b-1 | | 10+8w=118 | | -4m-18=32 | | 55+15x=10+20x | | s2+5s+10=0 | | 15+a/2=45 | | u=1-6 | | 21+5f=66 | | 1.4n=140 |